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COMMUTING PROJECTIONS ON GRAPHS

PANAYOT S. VASSILEVSKI AND LUDMIL T. ZIKATANOV

Abstract. For a given (connected) graph, we consider vector spaces of (discrete) functions
defined on its vertices and its edges. These two spaces are related by a discrete gradient
operator, Grad and its adjoint, −Div, referred to as (negative) discrete divergence. We
also consider a coarse graph obtained by aggregation of vertices of the original one. Then a
coarse vertex space is identified with the subspace of piecewise constant functions over the
aggregates. We consider the `2-projection QH onto the space of these piecewise constants.
In the present paper, our main result is the construction of a projection πH from the original
edge-space onto a properly constructed coarse edge-space associated with the edges of the
coarse graph. The projections πH and QH commute with the discrete divergence operator,
i.e., we have div πH = QH div. The respective pair of coarse edge-space and coarse vertex-
space offer the potential to construct two-level, and by recursion, multilevel methods for the
mixed formulation of the graph Laplacian which utilizes the discrete divergence operator.
The performance of one two-level method with overlapping Schwarz smoothing and correc-
tion based on the constructed coarse spaces for solving such mixed graph Laplacian systems
is illustrated on a number of graph examples.

1. Introduction

This paper considers discrete divergence operator Div on functions defined on graph edges
as the negative adjoint of the (discrete) gradient operator Grad. The latter acts on functions
defined on graph vertices and takes values on the graph edges. The commuting diagram
property which we prove here is similar to the one introduced in [1] for finite element spaces
and agglomerated coarse spaces (finite element graphs). The Grad operator naturally ap-
pears in the factorization of the popular graph Laplacian operator (cf. [2, 3, 4]) and also
in the finite difference discretizations of elliptic equations on unstructured grids [5]. For
solving problems with graph Laplacian, which gives rise to symmetric positive semi-definite
M -matrices, multilevel methods such as algebraic multigrid methods (or AMG, see [6]) are
natural candidates. For example, coarsening methods based on aggregation and associated
coarse spaces of piecewise constant functions have been successfully used in [7], [8], and [9].
The choice of coarse space with piecewise constants is natural also for matrices coming from
cell–centered finite difference and interior penalty (discontinuous Galerkin) discretizations
of second order elliptic PDEs, which motivated by the fact that the space for the pressure
unknown in the mixed formulation of second order elliptic equations can naturally be chosen
discontinuous (piecewise constants, in the lowest order case).

In this paper, we are interested in graph coarsening by aggregation which seems to be the
method of choice in practice. Namely, by grouping the vertices of the original graph into
sets of connected vertices that form a non-overlapping partitioning, we define a coarse graph
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with coarse vertices being the aggregates. We also define edges of the coarse graph; namely,
a pair of aggregates are connected by a coarse edge if there is an edge of the original graph
with its two different vertices belonging to different aggregates of this pair. With the coarse
graph, we associate a coarse space of function of piecewise constants, SH , with respect to
the set of aggregates that define the coarse graph vertices. The main result of this paper
is the construction of a projection operator πH acting on the space of functions U defined
on the edges of a given graph with its range being an appropriately constructed coarse-edge
space UH , a subspace of U . This projection operator, together with the piecewise constant
projection QH acting on the vertex-based space S (on the same graph) and range SH , define
respective pair of coarse spaces that can be used to define coarse versions of the discrete
Laplacian in mixed setting (to be introduced later on). A main property is that the pair of
projections πH , QH commute with the discrete divergence operator, namely, we have

Div πH = QH Div .

This property and the fact that the coarse basis {ϕI} of UH ⊂ U , that we construct has
certain energy minimizing property is proven important in the construction of multilevel
methods for mixed systems involving the (continuous PDE) divergence operator (cf. [1],
[10]). The same applies to the mixed system associated with the graph Laplacian. Addition-
ally, based on its better energy minimizing property (by construction) UH can be used for
constructing multilevel methods for graph Laplacian defined on a graph that has as vertices
the edges of the original graph. In the present paper, however, our focus is to introduce the
spaces and operators and study their properties, including their performance in two-level
methods. Their possible further application to formulate and solve optimization problems
on edges or the pair of edges and vertices, will be studied elsewhere.

The remainder of this paper is structured as follows. In Section 2, we introduce the basic
definitions, and study some main properties of the discrete gradient and divergence operators.
In Section 3, the main construction of the local basis {ϕI} of the coarse edge space UH is
introduced. Its energy minimizing property is studied in Section 4 The main commutativity
property of the projections QH and πH is proven in Section 5. Some illustration of the
constructed subgraphs and numerical verification of some of the theoretical results is shown
in Section 6.

2. Notation and preliminaries

Let G be a graph with set of vertices V = {1, . . . , n} and set of edges E . We assume that
G is undirected, that is if (i, j) ∈ E then (j, i) ∈ E . For weighted graph G, to each edge
e ∈ E , we assign a weight w(e) which is a real number. Typically, w(e) > 0. For undirected
weighted graph G, we assume that w(e) = w(e′) for e = (i, j) and e′ = (j, i). In what follows,
we can either assume that E contains only one of the edges e = (i, j) and e′ = (j, i), or all
functions ψ defined on E , have the property ψ(e) = ψ(e′). The latter assumption is a bit
odd especially when we define inner products and operators on functions defined on E , but
works just fine.

In the present paper, we deal with subgraphs of a given G and with vector spaces and
operators associated with them. The corresponding definitions and constructions are found
next.

2.1. Basic definitions. We now introduce several notions which we need later on. With
the graph G = (V , E), we associate two vector spaces S = IRn and U = IRnE . The inner
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product and respective norms in these spaces are denoted by (·, ·) and ‖ · ‖ respectively. We
use the same notation for the inner product and the norm for both S and U . This should
not cause confusion, since we use bold letters to indicate elements of U . Thus, we have,

(p, q) =
n∑

i=1

piqi =
∑
j∈V

pjqj, ‖p‖2 = (p, p), for all p ∈ S, q ∈ S,

(v,w) =

nE∑
k=1

vkwk =
∑
e∈E

vewe. ‖v‖2 = (v,v), for all v ∈ U , w ∈ U .

The cardinality of a finite set Ω is denoted by |Ω|. For example, we have n = |V|, nE = |E|,
etc. We call a graph G = (V , E) connected if for every pair of i ∈ V and j ∈ V there exist
m + 1-vertices {k`}m

`=0 ⊂ V with i = k0, and j = km, and such that (k`−1, k`) ∈ E for all
` = 1, . . . ,m. In other words, there is a path between i and j formed by the edges of G.

A sub-graph of G, a ⊂ G, is defied as a = (Va, Ea), and is a graph whose vertices Va are
subset of V and its set of edges Ea ⊂ E is the set of edges from E which have both their ends
in Va. If a is itself a connected graph, we refer to a as aggregate. Note that once the subset
of vertices Va is fixed the subgraph a is uniquely determined.

Consider now the set of edges Ia ⊂ E which have exactly one end in Va. The set of vertices
that are end points of edges in Ia and are also in a are called boundary vertices of a and we
denote this set by V∂a. Clearly V∂a ⊂ Va ⊂ V. Edges from Ea which have both their ends in
V∂a form E∂a. Finally, the subgraph ∂a = (V∂a, E∂a) is called the boundary of a. We assume
that |Va| > 1 for the sub-graphs (aggregates) that we consider later on. In such a case, Ea

contains at least one edge, whereas we note that E∂a could be empty.

2.2. Weighted graph Laplacian, discrete divergence and gradient. The discrete gra-
dient Grad : S 7→ U is defined as follows

(2.1) (Grad q)e = εij(qi − qj).

The sign εij = ±1, satisfies εij = −εji is chosen a priori and fixed. The considerations that
follow do not depend on what choice of sign we made, as long as εij = −εji. If one wants to
remove this little ambiguity, a choice εij = sign(i−j) works. Next, following some traditional
notation, we define Div : U 7→ S as the adjoint to (−Grad), i.e,

(2.2) (Div v, q) = −(v, Grad q), for all q ∈ S.
Given a positive function w : E 7→ IR, which assigns a weight to each edge, the (weighted)

graph Laplacian L is defined via the following quadratic form (L·, ·) : S × S 7→ IR,

(2.3) (Lp, q) =
∑

e=(i, j)∈E

w(e)(pi − pj)(qi − qj) = (W Grad p,Grad q).

Here W : U 7→ U is a diagonal matrix such that if W = (We,e′), then We,e′ = w(e)δe,e′ (and
δe, e′ is the Kronecker symbol). Using the divergence operator defined in (2.2), we have the
factorization

(Lp, q) = (W Grad p,Grad q)) = −(Div(W Grad p), q).

That is, we have L = −DivW Grad p. Using this factorization, given a problem Lp = f , it
can be posed as the following mixed system for u ∈ U and p ∈ S,

(2.4)
(W−1u, v) + (Div v, p) = 0, for all v ∈ U ,
(Divu, q) = (−f, q), for all q ∈ S.
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We note that the operators Grad, Div, W and L depend on G, and we write GradG, DivG,
WG and LG when such dependence needs to be emphasized.

2.3. Subspaces and projections. For an integer N > 0, for Ω ⊂ {1, . . . , N}, we define
the vector spaces S = IRN and SΩ ⊂ S:

SΩ = {v ∈ S, such that vi = 0 for all i /∈ Ω}.
The `2–orthogonal projection on SΩ, denoted by QΩ is defined in the usual way:

For q ∈ S, QΩq ∈ SΩ is the vector that is the same as q on Ω and zero otherwise, that is,

(2.5) (QΩq)i =

{
qi, for all i ∈ Ω,
0, for all i /∈ Ω.

Equivalently, one can verify the following properties of Q = QΩ (often used in the proofs)
which hold for all p ∈ S, q ∈ S and s ∈ SΩ:

(Qq, s) = (q, s), Q2 = Q, (Qp, q) = (p,Qq), (Qp,Qq) = (p,Qq).

We now introduce the “constant vector’’ 1 ∈ IRN , 1i = 1, for i = 1, . . . , N . We write
1Ω = QΩ1 and, we also denote the `2-based projection on the one–dimensional space spanned
by 1Ω with Q0,Ω. If 〈q〉Ω is the `2-weighted average value of q on Ω, i.e.,

〈q〉Ω =
(1Ω, q)

(1Ω,1Ω)
,

then have the following representation

Q0,Ωq = 〈q〉Ω1Ω.

In the special case, when Ω = {1, . . . , N} (i.e. SΩ = S = IRN) we write Q0, instead of Q0,Ω.
We use these definitions with N = n, N = nE , Ω = Va, Ω = Ea, or Ω = Ia. In the case

when Ω = Va for an aggregate a, we denote the vector subspace by Sa, and the corresponding
projections are denoted by Qa, or Q0,a respectively. We use bold letters for the spaces and
projections on edges. Thus, when Ω = Ea, we denote the vector subspace by Ua, or, in
general, when Ω = I ⊂ E we write UI for the corresponding vector space. The projection
on UI , is denoted accordingly by QI .

2.4. A main property of Div operator. The next proposition is an important ingredient
that shows that the saddle point problems defined later are uniquely solvable.

Proposition 2.1. Let X = (VX , EX), with |VX | = nX and |E| = mX be a connected graph
and WX : IRmX 7→ IRmX be a diagonal matrix of edge weights for X. We assume that
(WX)ee > 0, for all e ∈ EX . Given g ∈ IRnX there exists a ψ ∈ IRmX such that

(2.6) (DivX ψ, q) = (g, q), for all q ∈ IRnX , such that (q,1) = 0.

Proof. First we show that LX defined as

(LXp, q) = (WX GradX p,GradX q),

is invertible on the sub-space of vectors orthogonal to 1. Indeed, assume that there exists a
q ∈ IRnX with (q,1) = 0, and such that LXq = 0. We then have that

0 = (LXq, q) =
∑
e∈EX

(WX)ee(qi − qj)
2.
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Since (WX)ee > 0, this implies that qi = qj for all (i, j) ∈ EX . By assumption, the graph X is
connected, and thus, for any k = 1, . . . , n, there is a path from the vertex labeled with k to the
vertex labeled with 1; namely, we have that qk = q1 for all k = 1, . . . , nX . This can happen
if and only if q is proportional to 1. Since q is also `2-orthogonal to 1, we conclude that
q = 0. This implies that LX is invertible on the `2-orthogonal complement of span{1}. We

denote this generalized inverse of LX with L†
X . We have that LXL†

X(g−c0(g)1) = g−c0(g)1,
where c0(g) = 〈q〉X is the `2(X)–average of g.

Letting ψ = −WX GradX L†
X(g − c0(g)1), we arrive at

(DivX ψ, q) = −(ψ,GradX(q)) = (WX GradX L†
X(g − c0(g)1),GradX q)

= (LXL†
X(g − c0(g)1), q) = (g − c0(g)1, q)

= (g − c0(g)1, q) = (g, q).

In the last identity, we used that q is `2–orthogonal to 1. �

We prove a corollary from Proposition 2.1 for an aggregate a, since the result stated in
the corollary is used later.

Corollary 2.2. Let (Va, Ea) = a ⊂ G be a given connected subgraph (aggregate) of a graph
G. Then the problem: Find ψa ∈ Ua satisfying

(DivGψa, q) = −(g, q)(2.7)

for all q ∈ Sa, such that (q,1) = 0,

has at least one solution.

Proof. We expand the left side of (2.7) to obtain that

(2.8) (DivGψa, q) = −(ψa,GradG q) = −
∑

(i,j)=e∈E

(ψa)eεij(qi − qj).

Since ψa ∈ Ua, it follows that ψa is zero on all edges not in Ea. Therefore, the above sum is
not over all edges, but only over Ea, and we get

(2.9) (DivGψa, q) = −
∑

(i,j)=e∈Ea

(ψa)eεij(qi − qj) = (Divaψa, q).

We now use the fact that q ∈ Sa to obtain that the right side of (2.7) and the orthogonality
constraint (q,1) = 0 are as follows:

(2.10) (g, q) =
∑
j∈Va

gjqj, (q,1) = 0 ⇔
∑
j∈Va

qj = 0.

Similar manipulations in (2.6) show that the left side, the right side and the orthogonality
constraint in (2.6) are exactly the same as equations given in (2.8) and in (2.10) with X = a.
Thus, from the Proposition 2.1 it immediately follows that there exists at least one ψa ∈ Ua

solving (2.7). �
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3. The local basis of the coarse edge space UH

We consider a collection of aggregates {ak}nc
k=1 that correspond to a non-overlapping par-

tition of the set of vertices

V = ∪nc
k=1Vak

= ∪aVa.

Let e = (i, j) ∈ E be a fixed edge. We then have i ∈ Va and j ∈ Va′ with the following two
possibilities: Either a = a′ or a 6= a′. In the former case we have that e ∈ Ea and in the
latter case we have that e connects two vertices from the boundaries ∂a and ∂a′. This splits
the set of edges in two classes which we designate as follows: (1) interior edges denoted by
E0, for which both ends are in a for some a; and (2) boundary edges, denoted by E∂, when
an edge is boundary edge for exactly two aggregates, namely

E∂ = ∪a,a′Iaa′ , with Iaa′ = {e = (i, j), e ∈ E , such that i ∈ V∂a and j ∈ V∂a′}.
The collections of all interfaces {Iaa′} we denote with Γ and the interface edges, forming Γ,
are exactly the edges that are in E , but are not in ∪aEa, i.e.

Γ = E \ (∪nc
k=1Eak

) .

Clearly, an interface I = Iaa′ ∈ Γ, uniquely determines the pair (a, a′). In our considerations
Iaa′ and Ia′a represent one and the same interface. Thus, we need to chose only one of
the Iaa′ or Ia′a to be in Γ. This is the same as to choose unique labeling of the interfaces.
One natural way to do this for an interface I connecting a pair of aggregates ak and am for
some 1 ≤ k ≤ nc and 1 ≤ m ≤ nc, k 6= m is to set Iaa′ ∈ Γ if and only if a = amin{k,m}
and a′ = amax{k,m}. We note here that the consideration that follow do not depend on the
particular choice of labeling of the interfaces and without loss of generality we may assume
that such labeling is fixed. We then introduce σI , for I = Iaa′

(3.1) σI = εa,a′ QI Grad1a.

Here, the sign εa,a′ = ±1 is chosen a priori such that εa,a′ = −εa′,a. Since the components of
(1a + 1a′)k = 1 for k ∈ Va ∪ Va′ , it follows that

QI Grad(1a + 1a′) = 0.

This relation implies that changing a to a′ in (3.1) gives the same quantity. Indeed, we have

(3.2) 0 = QI Grad(1a + 1a′) =⇒ σI = −εa,a′QI Grad1a′ = εa′,aQI Grad1a′ .

For a given ψ ∈ U we now introduce the following averaging operator, which also respects
the directions of the edges on the interface Iaa′ :

(3.3) {{ψ}}I =
(ψ,σI)

‖σI‖2
.

Example 3.1. As an example, let us consider the case when all edges on the interface are
pointing in one direction, or equivalently, εij = 1, for all (i, j) = e ∈ I with i ∈ ∂Va and
j ∈ ∂Va′. Letting εa.a′ = 1, we have σI = 1I and {{ψ}}I = 〈ψ〉I.

To construct a coarse basis and associated projection πH , we need a bilinear form

(3.4) B(·, ·) : U ×U 7→ R,

that is symmetric and positive semi-definite on U . We require that its restriction to the
local spaces UEa be positive definite.
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We are interested in the following local saddle-point problem: Find ϕI,a ∈ UEa and
pI, a ∈ Sa, (p,1) = 0, satisfying

B(ϕI,a,v) + (pI, a, Div v) = −B(σI ,v), for all v ∈ UEa(3.5)

(DivϕI,a, q) = −(DivσI , q),(3.6)

for all q ∈ Sa, such that (q,1) = 0.

An example of (3.4) is the `2–inner product on U , namely:

(3.7) B(ψ,η) =
∑
e∈E

ψeηe.

Note that this choice, the right hand side in (3.5) is zero (since the support I of σI and the
support of v ∈ UEa are non-intersecting). Another example of (3.4) is given in Example 4.1.

The saddle point problem (3.5)-(3.6) clearly has a solution. Indeed, we observe that this
is the Lagrange multiplier formulation of the constrained minimization problem:

ϕI,a = arg min{B(ψ + σI ,ψ + σI)}, subject to ψ ∈ UEa , and(3.8)

(Divψ, q) = −(DivσI , q), for all q ∈ Sa, such that (q,1) = 0.(3.9)

By Corollary 2.2, the set of functions that satisfy the constraints is non-empty. It follows
then that the minimizer ϕI,a exists and is unique, because B(·, ·) is SPD on UEa , as follows
from the classical theory of saddle point problems. We solve analogous problem on a′ and
we find a solution ϕI,a′ there. We then define ϕI (which corresponds to I) in the following
way:

(ϕI)e =



(ϕI,a)e for all e ∈ Ea,

(σI)e for all e ∈ I,

(ϕI,a′)e for all e ∈ Ea′ ,

0 for all other edges.

Note that from the second equation in (3.5)-(3.6) we get that

(3.10) (DivϕI , q) = 0, for all q ∈ Sa, such that (q,1) = 0.

We now define the piece-wise constant coarse space

SH = ⊕nc
k=1 span{Qak

1} = ⊕nc
k=1 span{1ak

}.

Since the sets of vertices Vak
, k = 1, . . . , nc are disjoint the `2-orthogonal projection on the

space SH is given by

QH =
nc∑

k=1

Q0,ak
=

∑
a

Q0,a.

Finally, we define the coarse subspace of U as

(3.11) UH = span{ϕI}I∈Γ.
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4. Edge spaces and a global energy minimizing property of the basis {ϕI}

We now focus on a global property of the basis we have defined for UH , namely {ϕI}I∈Γ.
These functions are defined via the interface conditions (ϕI)e = σe for all e ∈ I. Our goal
is to show a global energy minimization property of their sum. This can be done for a wide
range of bilinear forms B(·, ·) in (3.4). More specifically, we assume that the form B gives
rise to a matrix B = (be,e′) with graph corresponding to its sparsity for which the interface
Γ is a separator, i.e., B has possibly nonzero entries be,e′ if e ∈ Ea only for e′ ∈ Ea ∪ Γ but

not for e′ ∈ Ea
′ , for any a

′ 6= a. Therefore, we have the localization property

(4.1) B(u, v) = 0, for any u ∈ UEa and any v ∈ UEa′
, a 6= a′.

It is clear that the `2–form (3.7) trivially satisfies the above localization property.

Example 4.1. Another example of such global bilinear form B(·, ·) satisfying (4.1) is defined
via a graph, which is dual, in some sense, to G = (V , E). More specifically, we consider
G∗ = (V∗, E∗), where V∗ = E, and a pair (e, e′) ∈ E∗, for e ∈ E and e′ ∈ E, if and only if e
and e′ share a vertex. Next, consider the graph Laplacian on G∗, denoted with LG∗ : U 7→ U .
For the bilinear form B, we then put:

(4.2) B(ϕ,ψ) = (LG∗(εϕ), εψ).

Here, εη is an edge–defined function (i.e., from U) such that (εη)e = εeηe. The entries
εe = εij, e = (i, j) are the ones used to define Grad–operator in (2.1).

Consider the edge-sign function ε introduced in Example 4.1. For any vertex i ∈ VG and
δi = (δi,j)

n
j=1 the unit coordinate vector associated with it, for the ith entry of Div ε, we

have

(Div ε)i = −(ε, Grad δi) = −
∑

e=(i,j)∈E

εe(Grad δi)e

= −
∑

e=(i,j)∈E

εe (εe(δii − δij)) = −
∑

e=(i,j)∈E

1

= −deg(i).

Above, deg(i) stands for the number of edges meeting at vertex i, i.e., it denotes the degree
of vertex i.

It is clear then that with D = diag (deg(i)),

(4.3) Div ε = −D1.

For bilinear forms B that satisfy the localization property (4.1), we have the following
main characterization result of the basis {ϕI}I∈Γ.

Theorem 4.2. Let ϕ =
∑
I inΓ

ϕI, where ϕI is defined based on the boundary value σI and the

functions ϕa and ϕA′ which are the solution of the local constrained minimization problem
(3.8) (for a and a′, respectively). If the energy form B satisfies the localization property (4.1),

then ϕ =
∑
I∈Γ

ϕI is the unique minimizer of the global constrained minimization problem

(4.4) B(ϕ,ϕ) 7→ min,



COMMUTING PROJECTIONS ON GRAPHS 9

such that

(4.5)
ϕ|Γ = σΓ ≡

∑
I∈Γ

σI ,

(Divϕ, q) = 0, for all q ∈ S : (q,1a) = 0, for all a.

Proof. By construction, we have that each basis function ϕI = ϕI, a + ϕI,a′ + σI and
pI ∈ Sa ⊕ Sa′ being equal to pI,a on a and to pI,a′ on a′, satisfy:

B(ϕI ,v) + (pI ,Div v) = 0, for all v ∈ UEa ⊕UEa
′ ,(4.6)

(DivϕI , q) = 0,(4.7)

for all q ∈ Sa ⊕ Sa′ ,(4.8)

such that (q,1a) = 0 and (q,1a′) = 0.

Note that equation (4.6) above holds true also for v ∈ ⊕a′UE ′a , i.e., for any v ∈ U vanishing
on Γ due to the localization property (4.1) and the local support of pI . Similarly, equation
(4.7) holds for any q ∈ ⊕a′Sa′ .

B(ϕ,v) + (
∑
I

pI ,Div v) = 0, for all v ∈ ⊕aUEa(4.9)

(Divϕ, q) = 0,(4.10)

for all q ∈ ⊕ASa, such that (q,1a) = 0.

Observing now that the equations above are the Lagrange equations for the global con-
straint minimization problem (4.4)-(4.5), we conclude that ϕ in fact solves that minimization
problem. �

We now apply Theorem (4.2) to a graph with constant degree vertices. In some applica-
tions, it is useful to embed a given graph Laplacian into a graph Laplacian corresponding to
a larger graph, however with constant degree. In that case, we have the following important
property of the basis {ϕI}, since it provides partition of unity (or rather partition of the
edge-sign function ε) for the edge spaces. If we take the bilinear form defined via the dual
graph Laplacian in (4.2), when the signs εij, (i, j) = e ∈ E are chosen so that σI = 1I the

basis ϕI forms partition of unity, namely,
∑
I∈Γ

ϕI = ε. This identity follows from the fact

that
∑
I∈Γ

ϕI minimizes B(·, ·) and the unique minimizer in this case is ε ∈ U . Note that∑
I∈Γ

ϕI restricted to I equals ϕI = σI = εa,a′ Grad1a = εa,a′QIε which equals ε restricted

to I. Also, due to (4.3), we have (Div ε, Qaq) = (D1, Qaq) = const (q, 1A) = 0, i.e., it
satisfies the constraints (4.5) since for the graph we consider, D = diag (deg(i)) = const I.

5. Commuting diagram property

We aim to show now that with properly constructed πH : U 7→ UH the following diagram

U
Div−−−→ S

πH

y yQH

UH −−−→
Div

SH
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commutes. Above, QH is the `2-based projection on the space SH . We need the following
proposition, which shows an important property for the locally constructed ϕI .

Proposition 5.1. Let I ∈ Γ be such that it connects two aggregates a and a′, and q ∈ IRn.
We then have the following

(DivϕI , q) = (QH DivϕI , q).

Proof. Let a be any of the aggregates adjacent to I. By construction (DivϕI , Qaq) = 0, for

all q such that (Qaq,1) = 0 (see equation (3.10)). Observing that
∑

a

Qaq = q, and

(5.1) Q0,a = QaQ0,a = Q0,aQa,

we obtain

(DivϕI , q) = (DivϕI ,
∑

a

Qaq) =
∑

a

(DivϕI , Qaq)

=
∑

a

(DivϕI , Q0,aQaq) +
∑

a

(DivϕI , (I −Q0,a)Qaq)

=
∑

a

(DivϕI , Q0,aq) =
∑

a

(Q0,a DivϕI , q)

= (
∑

a

Q0,a DivϕI , q) = (QH DivϕI , q).

The first identity holds because the aggregates are disjoint, the second follows the fact that
the scalar product is bi-linear, the third is just splitting Qaq as a sum of constant part and
a part orthogonal to the constant on a, namely,

Qaq = Q0,aQaq + (I −Q0,a)Qaq.

The fourth equality holds by (3.10) and the rest of the relations follow easily from the
definitions and equation (5.1). �

The definition of interpolation from the space span{ϕI}I∈Γ is done then in a canonical
way:

Definition 5.2. For any ψ ∈ U , we set

(5.2) πHψ =
∑
I∈Γ

{{ψ}}IϕI .

By construction πH : U 7→ UH . We next prove a theorem showing that the diagram given
at the beginning of this section commutes.

Theorem 5.3. For all ψ ∈ U and q ∈ S we have

(Div πHψ, q) = (QH Divψ, q).
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Proof. From Proposition 5.1 and the definition of Grad we have

−(Div πHψ, q) = −
∑
I∈Γ

{{ψ}}I(DivϕI , q)

= −
∑
I∈Γ

{{ψ}}I(DivϕI , QHq)

=
∑
I∈Γ

{{ψ}}I(ϕI ,Grad(QHq)).

Above, we have used that DivϕI is constant over each aggregate a. Next, observe that
(GradQHq)e = 0, for all e /∈ Γ, and hence, QI(GradQHq) = (GradQHq). We then have,
for all η ∈ U and q ∈ S,

(5.3) (η,GradQHq) =
∑
I∈Γ

(η,QI(GradQHq)) =
∑
I∈Γ

(QIη,QI(GradQHq))

From equations (3.1) and (3.2) we also obtain

(5.4)

QI(GradQHq) = QI Grad(〈q〉a1a + 〈q〉a′1a′)

= 〈q〉aQI Grad1a + 〈q〉a′QI Grad1a′

= εa,a′ (〈q〉a − 〈q〉a′)σI .

Using now the relations (5.3) and (5.4) (both are used twice), the fact that QIϕI = σI , and
the defining relation for {{ψ}}I in (3.3), we arrive at

−(Div πHψ, q) =
∑
I∈Γ

{{ψ}}I(QIϕI ,QI(GradQHq))

=
∑
I∈Γ

{{ψ}}I(σI ,QI(GradQHq)) =
∑
I∈Γ

{{ψ}}Iεa,a′ (〈q〉a − 〈q〉a′)‖σI‖2

=
∑
I∈Γ

(ψ,σI)εa,a′ (〈q〉a − 〈q〉a′) =
∑
I∈Γ

(ψ, εa,a′ (〈q〉a − 〈q〉a′)σI)

=
∑
I∈Γ

(ψ,QI GradQHq) = (ψ,GradQHq)

= −(Divψ, QHq) = −(QH Divψ, q).

This completes the proof. �

Using adjoint operations, we obtain

(Div πHψ, q) = −(πHψ,Grad q) = −(ψ, π∗H Grad q).

Similarly,

(QH Divψ, q) = (Divψ, QHq) = −(ψ,GradQHq).

Then Theorem 5.3 implies the following corollary.

Corollary 5.4. Let π∗H be the `2–adjoint of πH . Then, the following identity holds:

π∗H Grad = GradQH .



12 PANAYOT S. VASSILEVSKI AND LUDMIL T. ZIKATANOV

6. Numerical illustration

6.1. Illustration of graphs, aggregation, and properties of the coarse edge-space
UH. We plot here several figures illustrating the notions we have introduced earlier and the
results we have shown to hold. In Figure 6.1 we show the example of a graph which we use
for our test: a planar triangulation of L-shaped domain with 1016 vertices and 2926 edges.
Next to it in Fig. 6.1 we show the splitting into 14 subgraphs obtained by a simple and well
known aggregation algorithm. The greedy aggregation algorithm that we use is probably

A graph G, vert=1016 nedges=2926

(a) A test graph

Splitting in nc14 aggregates (connected subgraphs)

(b) Splitting into subgraphs

Figure 6.1: A planar graph G with 1016 vertices and 2926 edges, and a splitting of G into
subgraphs

the simplest version discussed in [11] is as follows:

Algorithm 6.1. Greedy subgraph splitting.

(1) Set nc = 0 and for i = 1 : n do:
(a) If i and all its neighbors have not been visited, then we set nc = nc+1 and mark

i and all its neighbors as visited and also being in the subgraph nc.
(b) If at least one neighbor of i has been visited, we continue the loop over the

vertices.
(2) Since after this procedure there will be vertices which do not belong to any aggregate

(but definitely have a neighboring aggregate), we add each such vertex to a neighboring
aggregate and we pick the one which has minimal number of points in it.

(3) After such pass all vertices of the graph are members of an aggregate.

One may apply this algorithm recursively, by defining a coarse grid graph in which the
vertices are the aggregates just formed and we have an edge between two aggregates a and
a′ if and only if there is an edge in the graph G connecting a vertex in Va with a vertex in
Va′ . One then can apply the same algorithms to form aggregates of aggregates, etc. The
splitting depicted in Fig. 6.1 is obtained via two such recursive aggregations and its coarse
grid graph is shown in Fig 6.2.

In the same Figure 6.2, we have plotted a spanning tree for each of the subgraphs (so in
our example there are 14 spanning trees shown in Fig. 6.2. If Ta is such a tree for aggregate
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Coarser graph

(a) A test graph

Spanning tree in each subgraph (basis orthogonal to constant)

(b) Splitting into subgraphs

Figure 6.2: Coarse grid graph and spanning trees providing sparse basis orthogonal to the
constant in each of the aggregates

Figure 6.3: Illustration of graph G∗ introduced in Example 4.1

a, a sparse basis orthogonal to the constant in a, (namely a basis for the space orthogonal
to 1a) is provided by the columns of DivTa . This is immediate consequence from the fact
that a connected tree exists for each connected subgraph and such tree has exactly (|Va|−1)
edges and also from the fact that when restricted to a the vector 1a is a basis for the kernel
of columns GradTa .

In Fig. 6.3 we show the graph G∗ used to define the bilinear form in (4.2) and is restriction
of the bilinear form given by the graph Laplacian LG∗ in Example 4.1. To illustrate the result
of Proposition 5.1 we have also shown in Fig. 6.4 the plot of DivψH , where ψH is

ψH =
∑
I∈Γ

αIϕI ,
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Piece−wise constant divergence of function in UH

Figure 6.4: Plot of the divergence DivψH for ψH ∈ UH .

with {αI}I∈Γ are chosen at random. By Proposition 5.1 this should be a piece-wise constant,
as is clearly seen in Fig. 6.4.

Figure 6.5: An internet graph from http://opte.org

Another example we downloaded from http://opte.org and is the graph of the connec-
tions between class C networks on the internet. In Fig. 6.5 we have plotted the graph and in
Fig. 6.6 a subgraph with its neighboring subgraphs is shown. The colors indicate different
values of the piece-wise constant divergence of a vector in UH .
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Figure 6.6: Plot of the neighborhood of a subgraph. Different colors indicate the different
values of the piece-wise constant divergence.

6.2. A two-level method. We have also investigated the convergence of a two-level Schwarz
method for the mixed formulation of the graph Laplacian, namely: Find u ∈ U and p ∈ S
such that

(6.1)
B(u, v) + (Div v, p) = 0, for all v ∈ U ,

(Divu, q) = (−f, q), for all q ∈ S.

We note that here and in what follows, we consider f orthogonal to constants.
The two-level method that we consider here is as follows. Let

Uaa′ = Ua ⊕Ua′ ⊕UIaa′
, Saa′ = Sa ⊕ Sa′ ,

be the spaces associated with a pair of aggregates a and a′ which are neighboring, namely
Iaa′ ⊂ Γ. Let Ec be the set of such pairs (coarse graph edges). The two-level Schwarz is then
as follows (here J = nEc = |Ec|):

Algorithm 6.2. Two-level Schwarz algorithm:

1. Let u0 be such that Divu0 = −f .
2. For k = 1, . . . until convergence
3. Set w0 = uk−1 and for ` = 1, . . . , J (i.e., for every pair ` = (a, a′) ∈ Ec), solve the

constrained minimization problem

v` = arg min
χ`∈Uaa′

B(w`−1 + χ`,w`−1 + χ`),

subject to (Div v`, q) = 0, for all q ∈ Saa′. Set w` = w`−1 + v`.
4. Correct on the coarse grid by solving:

vH = arg min
vH∈UH

B(wJ + χH ,wJ + χH),

subject to (Div vH , q) = 0, for all q ∈ SH .
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5. Finally, the next iterate is uk = wJ + vH .

The initial guess u0 is found by first constructing a spanning tree, say a breath-first-search
tree (cf., e.g., [4]), T of G. Then, we solve for ũ0,T ∈ UT (i.e. ũ0,T is defined only on the
tree edges):

(6.2) DivT ũ0,T = −f.

Let ET be the set of the tree edges. We then set u0|ET
= ũ0,T and u0 = 0 on the other edges.

It is easy to see that by construction, DivG u0 = DivT ũ0,T = −f (since by assumption f
is orthogonal to constants). We also note that (6.2) is solvable with optimal cost, by the
following proposition.

Proposition 6.3. Let T be a tree with n edges and define G = GradT . Then G is invertible
(on the space orthogonal to 1) in O(n) operations. Similarly, consider DivT (the adjoint of
G). Then the problem (6.2) is solvable for any r.h.s. orthogonal to 1 also in linear time.

Proof. Since T is a tree it connects p ≥ 1 subtrees T1, . . . , Tp with a parent vertex. Let Gi

be the restriction of GradT to the subtree Ti. Then the matrix representation of G = GradT

admits the following (upper) triangular form:

G =



ε1 [0, −ε1, 0] 0 . . . 0

ε2 0 [0, −ε2, 0] . . . 0
... 0

εp 0 . . . . . . [0, −εp, 0]

0 G1 0 . . . 0

0 0 G2 . . . 0
...

...
...

. . . 0

0 . . . 0 0 Gp



.

Above, εs is a fixed sign associated with edge es, i.e., we have ε2s = 1. We are solving
Gu = f . Let the edges connecting the parent vertex i0 with the subtrees Ts be es = (i0, is),
s = 1, . . . , p, and the respective values of f be fes . Also, the restrictions of f to the
edges of Ts be fs. Then, to solve Gu = f , we proceed as follows. Let us + cs1s be the
solutions of Gs(us + cs1s) = Gsus = fs, where cs are arbitrary constants. Then, we can use
these constants to satisfy the remaining p equations εs(ui0 − uis − cs) = fes , es = (i0, is),
s = 1, . . . , p. Here uis = us|is (where is is the vertex in Ts that connects the parent
one i0 with Ts via the edge es = (i0, is)). It is clear that one of these constants remains
free, and to determine a unique overall solution u, we can choose that free constant from
the orthogonality condition (u, 1) = 0. This shows, that G is uniquely invertible on the
subspace orthogonal to constants and in our case of tree graph, the cost is linear with respect
to the number of edges of T .
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Now, consider the adjoint problem GTu = f . Note that here f = (fi) is a vector defined
on the vertices of T and u = (ue) is defined on the edges of T . From the equation

−εs


0

1

0

ues + GT
s us = fs,

using the fact that

(GT
s us, 1s) = (us, GradTs 1s) = 0,

we obtain

(6.3) −εsues = (fs, 1s).

We also have the equation for the parent vertex i0,

p∑
s=1

εsues = fi0 .

This gives

−
p∑

s=1

(fs, 1s) = fi0 ,

which holds since f is orthogonal to constants, i.e.,

0 = (f , 1) =

p∑
s=1

(fs, 1s) + fi0 = 0.

Then the solvability of GTu = f follows by induction. We determine us from the equation

(6.4) GT
s us = fs + cs


0

1

0

 .

The constant cs is chosen such that fs + cs


0

1

0

 is orthogonal to 1s which ensures, by

induction, the solvability (in linear time) of (6.4). We have cs = −(fs, 1s). Then, ues =
−εscs (see (6.3)), which completes the proof (including the fact about the linear cost). �

The two-level Schwarz method provides an iterate uk, and the corresponding pk ∈ S we
obtain by solving

GradT pk = ũk,T ,

where T is a fixed spanning tree of G, same as in equation (6.2). Here, ũk,T equals uk

restricted to the tree edges. Recall that the problem for pk above is solvable in linear time
(by Proposition 6.3) because the graph T we consider is a tree.
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n nc nE nEc n/nc ρ Nit

250 29 688 69 8.6 0.57 25

494 49 1412 123 10.1 0.58 26

1016 106 2926 282 9.6 0.55 23

2040 207 5979 570 9.9 0.62 30

4156 420 12225 1189 9.9 0.63 30

8362 816 24803 2343 10.2 0.64 32

16924 1630 50287 4753 10.4 0.62 30

34022 3206 101499 9409 10.6 0.63 31

Table 6.1: Two-level Schwarz method (FE mesh example): one step of aggregation for
constructing the coarse graph.

In Tables 6.1–6.3 we show the coarsening ratio n/nc, the number of iterations Nit, and

the average convergence rates ρ =

(
rk

r0

)1/Nit

with rk = ‖Div Grad pk + f‖`2/‖f‖`2 . In the

tables below we have also displayed the number of degrees of vertices n on the fine grid, the
number of coarse grid vertices nc, the number of edges in the fine graph nE = |E| and the
number of coarse grid edges nEc = |Ec| and In Table 6.1 and Table 6.2 the results for the
planar (FE mesh) graph are shown. We test the two-level Schwarz method with one and
two recursive aggregation steps and also for several levels of refinement. The graph is refined
using the longest edge bisection algorithm.

In Table 6.3 we show the results for the two-level Schwarz method when applied to the
graph from http://opte.org, for varying number of recursive aggregation steps (coarsening
ratios ranging from ≈ 3.5 to ≈ 740). The results shown in Tables 6.1–6.3 show that the two-
level Schwarz method presented converges and the convergence rate depends (as expected)
on the coarsening ratio n/nc.

7. Conclusions

In the present paper we have extended the notion of commuting projections from [1]
exploiting the discrete divergence operator which is defined on general (connected) graphs.
More specifically, based on commonly used aggregation-based coarsening, we define a coarse
graph with vertices being the set of aggregates. A natural coarse subspace for the original
vertex-based vector space is the space of piecewise constants with respect to the aggregates.
We have then constructed a coarse subspace of the original edge-based vector space that
complements the coarse piecewise constant vertex-based space. Based on the coarse edge-
based space, we have constructed a computable projection, and we have proved a main
commutative property (an analog of the result in [1]) for that projection and the standard
`2-based projection on the space of piecewise constants. Finally, we have presented numerical
illustration of the use of the pair of the thus constructed coarse spaces in a two-level Schwarz
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n nc nE nEc n/nc ρ Nit

250 4 688 5 62.5 0.71 42

494 6 1412 9 82.3 0.78 56

1016 14 2926 29 72.6 0.73 45

2040 24 5979 55 85.0 0.78 55

4156 49 12225 124 84.8 0.83 75

8362 87 24803 226 96.1 0.83 73

16924 170 50287 467 99.6 0.84 80

34022 331 101499 925 102.8 0.84 83

Table 6.2: Two-level Schwarz method (FE mesh example): two steps of recursive aggregation
for constructing the coarse space.

nc nEc n/nc ρ Nit

9898 13409 3.6 0.84 82

2914 4809 12.2 0.88 112

815 1613 43.7 0.75 49

220 620 162.0 0.88 111

Table 6.3: Two-level Schwarz method: the graph is from from http://opte.org. Conver-
gence rates for varying coarsening ratio ( increasing number of recursive aggregation steps)
are presented. In this example the number of vertices in the graph is n = 35638 and the
number of edges is nE = 42827.

method for solving the graph Laplacian problem in a mixed setting that exploits the discrete
divergence operator. The edge-based quantities (in addition to the vertex-based ones) that
we have touched upon in the present paper, provide us with an additional mathematical
structure for developing analytical tools that might prove useful in formulating and analyzing
problems on general graphs.
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[11] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for second and
fourth order elliptic problems. Computing, 56(3):179–196, 1996. International GAMM-Workshop on
Multi-level Methods (Meisdorf, 1994).

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94551, U.S.A.

E-mail address: panayot@llnl.gov

Department of Mathematics, The Pennsylvania State University, University Park, PA
16802, USA.

E-mail address: ludmil@psu.edu


